Electron transfer and electrocatalytics of cytochrome c and horseradish peroxidase on DNA modified electrode.

نویسندگان

  • Yonghai Song
  • Lingli Wan
  • Yu Wang
  • Sucai Zhao
  • Haoqing Hou
  • Li Wang
چکیده

A bio-interphase composed of DNA, cytochrome c (Cyt c) and horseradish peroxidase (HRP) was developed by layer-by-layer assembling Cyt c, DNA and Cyt c-HRP on biocompatible 11-mercaptoundecanoic acid--6-mercapto-1-hexanol modified gold electrode. The new bio-interphase was used as a model system to mimic the electron transfer and electrocatalytic performance of two proteins in living organisms. Results showed that the electron transfer rate at bi-protein bio-interphase was faster than those at the single protein bio-interphase, indicating a synergistic interaction between the two proteins occurred in the electron transfer. Moreover, the mixed proteins modified electrode exhibited good electrocatalytic response to reduction of hydrogen peroxide (H₂O₂) and oxygen (O₂), suggesting that it could be used as a sensor for H₂O₂ and O₂ detection. The properties of the bio-interphase, together with the bioelectrocatalytic activity, could make it useful in the development of bioelectronic devices, and investigation of electrochemistry of other heme proteins at functional interphase. It would also provide a new strategy for further study on the electron transfer of other multi-proteins in a bio-interphase and the development of biosensors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A photoelectrochemical immunosensor for benzo[a]pyrene detection amplified by bifunctional gold nanoparticles.

Ultrasensitive photoelectrochemical immunoassay of polycyclic aromatic hydrocarbon (PAH) is proposed using an antibody-modified nanostructured TiO(2) electrode combined with bifunctional gold nanoparticles modified with the PAH antigen and horseradish peroxidase (HRP). The HRP-catalyzed reaction prompts the electron transfer between the electrode and electrolyte causing an excellent photocataly...

متن کامل

Direct Electrochemistry of Horseradish Peroxidase on NiO Nanoflower Modified Electrode and Its Electrocatalytic Activity

In this paper nickel oxide (NiO) nanoflower was synthesized and used for the realization of direct electrochemistry of horseradish peroxidase (HRP). By using carbon ionic liquid electrode (CILE) as the substrate electrode, NiO-HRP composite was casted on the surface of CILE with chitosan (CTS) as the film forming material and the modified electrode was denoted as CTS/NiO-HRP/CILE. UV-Vis absorp...

متن کامل

Direct Electrochemistry and Electrocatalysis of Horseradish Peroxidase Immobilized in a DNA/Chitosan-Fe3O4 Magnetic Nanoparticle Bio-Complex Film

A DNA/chitosan-Fe₃O₄ magnetic nanoparticle bio-complex film was constructed for the immobilization of horseradish peroxidase (HRP) on a glassy carbon electrode. HRP was simply mixed with DNA, chitosan and Fe₃O₄ nanoparticles, and then applied to the electrode surface to form an enzyme-incorporated polyion complex film. Scanning electron microscopy (SEM) was used to study the surface features of...

متن کامل

Direct Electron Transfer-type Bioelectrocatalysis of Peroxidase at Mesoporous Carbon Electrodes and Its Application for Glucose Determination Based on Bienzyme System.

Non-catalytic direct electron transfer (DET) signal of Compound I of horseradish peroxidase (POD) was first detected at 0.7 V on POD/carbon nanotube mixture-modified electrodes. Excellent performance of DET-type bioelectrocatalysis was achieved with POD immobilized with glutaraldehyde on Ketjen Black (KB)-modified electrodes for H2O2 reduction with an onset potential of 0.65 V (vs. Ag | AgCl | ...

متن کامل

Direct electrochemistry and electrocatalytic behavior of horseradish peroxidase on attapulgite clay modified electrode.

A novel third-generation hydrogen peroxide (H(2)O(2)) biosensor was developed by immobilizing horseradish peroxidase (HRP) on a biocompatible attapulgite (ATP) modified glassy carbon (GC) electrode. The ATP could provide a biocompatible microenvironment for enzyme molecules, greatly amplify the coverage of HRP molecules on the electrode surface, and most importantly facilitate the direct electr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Bioelectrochemistry

دوره 85  شماره 

صفحات  -

تاریخ انتشار 2012